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Program for June 4th (Afternoon session in Italy)

15:45-16:00 Wellcome to the Conference

Chair: Maddalena Bonanzinga

16:00-16:25 Jan van Mill, University of Amsterdam, The Netherlands

Nowhere constant families of maps and resolvability

16:30-16:55 Vladimir Tkachuk, Universidad Autónoma Metropolitana, Mexico

On nice embeddings of Lindelöf scattered spaces

17:00-17:25 Leandro F. Aurichi, University São Paulo, Brasil

Topological remarks on end and edge-end spaces

17:30-17:55 Nathan A. Carlson, California Lutheran University, USA

On diagonal degrees and star networks

18:00-18:25 Santi Spadaro, University of Palermo, Italy

Towers and cellular-Lindelof spaces

18:30-18:55 Rodrigo Hernández-Gutiérrez, Universidad Autónoma Metropolitana, Mexico

An application of scales to cellular-Lindelöf spaces

Program for June 5th (Morning session in Italy)

9:45-10:00 Wellcome to the Morning session

Chair: Davide Giacopello

10:00-10:25 M. Sakai, Kanagawa University, Japan,

Embeddable ultrafilters into the Pixley-Roy spaces over ultrafilters

10:30-10:55 Paul Gartside, Pittsburgh University, USA

“Chain Conditions” and Pixley-Roy/Ocan Spaces

11:00-11:25 Lyubomyr Zdomskyy, Technische Universität Wien, Austria

Combinatorial covering properties in the Sacks model

11:30-11:55 Piotr Szewczak, Cardinal Stefan Wyszyński University in Warsaw, Poland

Topological selections and products

12:00-12:25 Daniele Toller, Aalborg University, Denmark

A gentle introduction to cellular automata

12:30-12:55 Ivan Gotchev, Central Connecticut State University, USA

On a question of Bonanzinga



Abstracts

Jan van Mill: Nowhere constant families of maps and resolvability

Joint work with István Juhász

If X is a topological space and Y is any set then we call a family F of maps from X to Y nowhere constant if
for every non-empty open set U in X there is f ∈ F with |f [U ]| > 1, i.e. f is not constant on U . We prove the
following result that improves several earlier results in the literature. If X is a topological space for which C(X),
the family of all continuous maps of X to R, is nowhere constant and X has a π-base consisting of connected sets
then X is c-resolvable.

Vladimir V. Tkachuk: On nice embeddings of Lindelöf scattered spaces

We will give an example of an Eberlein compact space K such that some Lindelöf subspace of K fails to be a
Lindelöf Σ-space. We will also show that any scattered Lindelöf subspace of a σ-product of first countable spaces is
σ-compact. The main result of this talk states that if X is the Gδ-modification of a scattered compact space, then
ext(Cp(X)) = ω.

Leandro F. Aurichi: Topological remarks on end and edge-end spaces

Joint work with with Paulo S. Magalhães Júnior and Lucas S. Real.

For an infinite graph G, there is a standard topological space called the end space of G. This space has several
applications in graph theory and has a long history of work on it. A motivation for this space is to represent
connections among vertices of the graph. Classically, these connections are thought in terms of sets of vertices, in
the sense “how many vertices are needed to separate a set?”. Diestel asked the question of what are the topological
spaces that are the end space of some graph. This question was recently solved by Pitz. Here we study another
natural space, presented in a similar fashion, where the motivation is to represent the connections in terms of sets
of edges, instead of vertices. One of our results is the characterization of what are the topological spaces obtained
this way. Another result is a topological game that helps in the characterization presented by Pitz.

Nathan A. Carlson: On diagonal degrees and star networks

Given an open cover U of a topological space X, we introduce the notion of a star network for U . The associated
cardinal function sn(X), where e(X) ≤ sn(X) ≤ L(X), is used to establish new cardinal inequalities involving
diagonal degrees. We show |X| ≤ sn(X)∆(X) for a T1 space X, giving a partial answer to a long-standing question
of Angelo Bella. Many further results are given using variations of sn(X). One result has as corollaries Buzyakova’s
theorem that a ccc space with a regular Gδ-diagonal has cardinality at most c, as well as three results of Gotchev.
Further results lead to logical improvements of theorems of Basile, Bella, and Ridderbos, a partial solution to a
question of the same authors, and a theorem of Gotchev, Tkachenko, and Tkachuk. Finally, we define the Urysohn
extent Ue(X) with the property Ue(X) ≤ min{aL(X), e(X)} and use the Erdős-Rado theorem to show that
|X| ≤ 2Ue(X)∆(X) for any Urysohn space X.

Santi Spadaro: Towers and cellular-Lindelof spaces

Joint work with Rodrigo Hernández-Gutiérrez.

Let κ be a cardinal. A space X is said to be (almost) cellular-Lindelöf if, for every κ-sized family U of pairwise di-
sjoint non-empty open subsets of X, there is a Lindelöf subspace L of X such that L has non-empty intersection with
every member of U (respectively, with κ-many members of U). Cellular-Lindelöf spaces are an interesting common
generalization of Lindelöf spaces and spaces with the countable chain condition, that was originally motivated by
the problem of finding a common extension to Arhangel’skii’s Theorem and the Hajnal-Juhász inequality (see [3]).
While solving this problem required a shift in perspective (see [5]), the question of whether every cellular-Lindelöf
first-countable regular space has cardinality at most continuum is still open, and various partial answers to it have
recently appeared in the literature (see, for example, [2, 4, 7, 8]).

After giving an introduction to cellular-Lindelöf spaces, we will present two new examples regarding this class of
spaces, the first one of which solves a question of Ofelia Alas, Luis Enrique Gutiérrez-Dominguez and Richard
Wilson [1].



1. A consistent example of a normal almost cellular-Lindelöf space which is neither cellular-Lindelöf nor weakly
Lindelöf.

2. A ZFC example of a space whose cellular Lindelöf property is independent of ZFC (and whose normality also
turns out to be independent of ZFC).

The first example uses a tower of uncountable subsets of ω1.

[1] O.T. Alas, L.E. Gutiérrez-Domı́nguez and R.G. Wilson, Compact productivity of Lindelöf-type properties,
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[6] A. Dow and R.M. Stephenson, Productivity of cellular-Lindelöf spaces, Topology Appl. 290 (2021), Article
ID 107606.

[7] I. Juhász, L. Soukup and Z. Szentmiklóssy, On cellular-compact spaces, Acta Math. Hung. 162 (2020),
549–556.

[8] V.V. Tkachuk and R.G. Wilson, Cellular-compact spaces and their applications, Acta Math. Hung. 159
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Rodrigo Hernández-Gutiérrez: An application of scales to cellular-Lindelöf spaces

Joint work with Santi Spadaro.

The class of cellular-Lindelöf spaces, which generalizes both the classes of Lindeöf spaces and spaces with the
countable chain condition, has been recently studied by several authors. In this talk, I will present an example of
a cellular-Lindelöf space answering an open question by Alas, Gutiérrez and Wilson from 2022. This example can
be constructed in models of set theory where there exists a type of set called scale so I will also talk about the
existence of scales and other applications they have.

Masami Sakai: Embeddable ultrafilters into the Pixley-Roy spaces over ultrafilters

For a T1-space X, we denote by PR(X) the Pixley-Roy space over X. For p ∈ ω∗, let Xp = {p}∪ω be the subspace
of the Stone-Čech compactification βω of the discrete space ω. we can show: if Xq can embedded into PR(Xp)
and Xp can be embedded into PR(Xq), then Xp and Xq are homeomorphic (i.e., p and q are type-equivalent). So,
it is natural to ask when Xq can be embedded into PR(Xp). For this question, we can see: If p is selective, then
PR(Xp) contains copies of some Xqn(n ∈ N) which are pairwise non-homeomorphic.

Paul Gartside: “Chain Conditions” and Pixley-Roy/Ocan Spaces

The “countable chain condition” (every uncountable family of open sets contains two that meet) and “calibre ω1”
(every uncountable family of open sets contains an uncountable subfamily with non-empty intersection) are typical
examples of “chain conditions”. We discuss what it means to say that two spaces have the same chain conditions,
and see that any two separable spaces have the same chain conditions. With the aid of Pixley-Roy/Ocan spaces we
show there is a 2c sized family of spaces of density no more than c all of which have different chain conditions.

Lyubomyr Zdomskyy: Combinatorial covering properties in the Sacks model

By a space we mean a metrizable separable space. A space X is Menger if for any sequence U0,U1, . . . of open
covers of X, there are finite families F0 ⊆ U0,F1 ⊆ U1, . . . such that the family

⋃
n∈ω Fn covers X. If, moreover,

the Fn’s can be chosen in such a way that for every x ∈ X, x ∈
⋃

Fn holds for all but finitely many n, X is
said to be Hurewicz. We call a space totally imperfect if it contains no copy of the Cantor space. We shall discuss
how combinatorics of Sacks conditions developed by Miller [2] combined with game characterization of the Menger
property, allow to show that there are no totally imperfect Menger sets of reals of size continuum in the Sacks



model. Therefore, the Menger property behaves in the Sacks model as an instance of the Perfect Set Property, sets
are either small or contain a perfect set. For models, which satisfy that the dominating number has size continuum,
there is always a totally imperfect Menger set of size continuum. (There are also models with small dominating
number, where such sets exist.) Thus, combined with our result the existence of totally imperfect Menger sets of
reals of size continuum is independent from ZFC.

Consonant spaces were introduced by Dolecki, Greco and Lechicki in 1995 and for the case X ⊆ 2ω charaterized by
Jordan [1] using a topological game on the complement 2ω \ X. By considering a grouped version of the Menger
game and using a similar approach like for the Menger space result, we conclude that every consonant and every
Hurewicz subspace of 2ω, as well as their complements, can be written as the union of ω1-many compact sets in the
Sacks model. In particular, there are only continuum many consonant spaces and Hurewicz spaces in this model.

[1] F. Jordan, Consonant spaces and topological games, Topology and its Applications 274 (2020), 107121.

[2] A. Miller, Mapping a set of reals onto the reals, Journal of Symbolic logic 48 (1983), 575–584.

Piotr Szewczak: Topological selections and products

Joint work with Boaz Tsaban and Lyubomyr Zdomskyy.

A topological space X is Menger if for every sequence of open covers O1,O2, . . . there are finite sets F1 ⊆ O1,F2 ⊆
O2, . . . such that the family {

⋃
F1,

⋃
F2, . . . } is a cover of X. If we can request that for every element x ∈ X the

set {n : x ∈
⋃
Fn } is co-finite, then the space X is Hurewicz. The above properties generalize σ-compactness and

the Hurewicz property is strictly stronger than Menger. We consider products of Menger or Hurewicz spaces in
various models of set theory and their connections to products of spaces with covering properties based on similar
patterns as mentioned above.

The research was funded by the National Science Center, Poland and the Austrian Science Found under the Weave-
UNISONO call in theWeave programme project: Set-theoretic aspects of topological selections 2021/03/Y/ST1/00122.

Daniele Toller: A gentle introduction to cellular automata

In this talk I will give a brief introduction to Cellular Automata, from their introduction in the 1940s by John von
Neumann, to their popularization in the 1970s with John Conway’s Game of Life, and then some attempt at their
classification by Stephen Wolfram in the 1980s. If time permits, I will mention some recent results obtained in
collaboration with H. Akin, D. Dikranjan, A. Giordano Bruno on linear and one-dimensional cellular automata.

Ivan Gotchev: On a question of Bonanzinga

In 1969, Arhangel′skĭı proved in [1] that if X is a Hausdorff space, then |X| ≤ 2χ(X)L(X), where χ(X) is the character
and L(X) is the Lindelöf degree of X . Since then it has been an open question if his inequality is true for every
T1-space X. In 2014, we proved in [3] that if X is a T1-space, then |X| ≤ nh(X)χ(X)L(X), where nh(X) is the
non-Hausdorff number of X. In that way we were able to positively answer this question for every T1-space for
which nh(X) ≤ 2χ(X)L(X), and, in particular, when nh(X) is not grater than the cardinality of the continuum. A
simple example shows that our inequality is not always true for T0-spaces.

Arhangel′skĭı and Šapirovskĭı strengthened Arhangel′skĭı’s inequality in 1974 by showing that if X is a Hausdorff
space, then |X| ≤ 2t(X)ψ(X)L(X), where t(X) is the tightness and ψ(X) is the pseudocharacter of X.

In 2013, Bonanzinga asked if Arhangel′skĭı– Šapirovskĭı’s inequality is true for every T1-space with finite Hausdorff
number H(X). We recall that if n ≥ 2 is an integer and X is a topological space, then H(X) = n iff nh(X) = n.

In this talk we will show how Arhangel′skĭı– Šapirovskĭı’s inequality, and therefore, Arhangel′skĭı’s inequality, could
be extended to be valid for all topological spaces. It follows from this result that if X is a T1-space such that
nhs(X) is finite, then |X| ≤ 2t(X)ψ(X)L(X). Unfortunately, this result only partially answers Bonanzinga’s question
because nh(X) ≤ nhs(X) for every topological space X. (We recall that the non-Hausdorff number of a space X
with respect to singletons, denoted by nhs(X), is nhs(X) := 1 + sup{|clθ({x}) : x ∈ X} [4] ).

[1] The power of bicompacta with first axiom of countability, (Russian), Dokl. Akad. Nauk SSSR 187 (1969),
967–970.

[2] Maddalena Bonanzinga, On the Hausdorff number of a topological space, Houston J. Math. 39 (2013), no.
3, 1013–1030.

[3] Ivan S. Gotchev, The non-Hausdorff number of a topological space, Topology Proc. 44 (2014), 249–256.

[4] Ivan S. Gotchev, Generalizations of two cardinal inequalities of Hajnal and Juhász, Topology Appl. 221
(2017), 425–431.


